A New Distributed Reinforcement Learning Algorithm for MultipleObjective Optimization

نویسنده

  • Eduardo Morales
چکیده

This paper describes a new algorithm, called MDQL, for the solution of multiple objective optimization problems. MDQL is based on a new distributed Q-learning algorithm, called DQL, which is also introduced in this paper. In DQL a family of independent agents, exploring diierent options, nds a common policy in a common environment. Information about action goodness is transmitted using traces over state-action pairs. MDQL extends this idea for multiple objectives, assigning a family of agents for each objective involved. A non-dominant criterion is used to construct Pareto fronts and by delaying adjustments on the rewards MDQL achieves better distributions of solutions. Furthermore , an extension for applying reinforcement learning to continuos functions is also given. Successful results of MDQL on several test-bed problems suggested in the literature are described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for the Solution of MultipleObjective Optimization Problems Based onReinforcement

Many problems can be characterized by several competing objectives. Multiple objective optimization problems have recently received considerable attention specially by the evolutionary algorithms community. Their proposals, however, require an adequate codiication of the problem into strings, which is not always easy to do. This paper introduces a new algorithm, called MDQL, for multiple object...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Product Distributions for Distributed Optimization

With connections to bounded rational game theory, information theory and statistical mechanics, Product Distribution (PD) theory provides a new framework for performing distributed optimization. Furthermore, PD theory extends and formalizes Collective Intelligence, thus connectingt distributed optimization to distributed Reinforcement Learning (RL). This paper provides an overview of PD theory ...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000